Welcome to the world of rocket boosted radio control gliders. This is not a model for a novice RC pilot, but anyone who is comfortable with RC flying of a medium speed model should be fine. This model has a very moderate glide and slow landing speed. Read through the instructions, look at the photos and be sure you understand the step before commiting to cutting or glue.
IntR/Ceptor Rocket glider instructions
Identify all pieces, the kit should contain:
Wing and rear fuse(taped together)
2 pushrods
2 Vertical Stabilizers(left and right)
Forward FuselageTop view
Fuse doubler bottom doubler(rectangular piece)
Upper fuselage side view(taped together)
Lower fuselage side view(taped together)
4 wingtip pod pieces.
Motor mount
Velcro(for battery and rx/bec attachment)
2 Rail buttons or 1 Launch lug
Styrene strips for rail button/launch lug attachment.
3M blenderm tape
Lead weight
Spare depron
Optional(if ordered):
Electric motor adapter
Notes before starting:
Reference to CA+ means foam safe CA+, normal CA+ will melt the foam!
You may use 320 grit sandpaper and a sanding block to slightly round the edges of the foam if you prefer that look. It will not markedly impact the flight performance either way. Be very careful and use a light touch, it is very easy to catch the foam on the edge of the paper and tear the foam.
Epoxy is not needed in this model. Weight is critical and the model is designed for the thrust and flight loads. Weight in the rear end is bad and will require additional weight in the front of the model.
Assembly:
- Unfold the fuselage top side view and glue the joint at the tape seam with CA+ and accelerator. Repeat with the fuselage bottom side view.
- CA+ the bottom fuselage doubler onto the fuselage bottom side view, between the two black marks. Make sure the bottom of the pieces are even. This needs to be flat.
- Unfold the front and rear wing halves, place upside down on a table with the tail surface hanging off the edge, and place CA+ glue in the tape joint and insert the carbon spar. Make sure it is glued in place well, then tape over with blenderm tape. Do not remove tape on the
- Tape the forward fuselage top view in place against the wing, make sure it is straight, the top should be down, use 3m blenderm tape. Flip the model with the top markings up, then glue the joint together using CA+ and accelerator.
- Test fit the top fuselage side view into the top of the fuselage/wing. be careful to not break off the tabs, the tabs should align the fuse side view straight, The foam compresses slightly so it is ok to press them in place. Once aligned perpendicular to the wing and ensuring it is straight with a straight edge, apply a bead of CA+ to both sides of the joint.
- Carefully insert a pushrod into each control horn. The pushrod goes in from the inboard end. Note** if your control horn is black use the third hole from the far end of the control horn, if it is white use the furthest hole out. You must do this now because it is hard to do once the fuselage side views are in place. Please handle the model carefully and do not snag the control horns on anything, you may want to tape them down to the control surface for now. You may need to twist the wire back and forth to get it to go into the hole, it should be snug and slop free. It may be necessary to rotate the pushrod end to drill the hole large enough to fit, be careful not to puncture your finger. Be careful to support the control horn so that you do not break the glue joint in the control surface. It is snug but it will fit with patience.
- Test fit the assembled lower fuselage side view piece into the notches in the wing and fuse. Make sure it fits well. Once happy with the fit and making sure it is straight down the middle of the wing, apply a bead of CA+ on both sides and use accelerator to set the glue. Make sure the fuselage does not get any twist or warp.
- Test fit the motor mount into the rear of the model. It is useful if you have a motor casing in the tube to hold it round. Make sure it fits, Make sure the fuselage pieces are aligned straight and the motor tube is aligned with the centerlines of the model. Make sure the motor hook is not blocked by the foam and can be reached to release the motor. I put the motor hook at the lower right quadrant when looking at the rear of the model, at about the 4:30 position, so it is not visible. When happy, use CA+ and make a bead on each joint and set it with accellerator. Make sure the motor tube is attached well but don’t overdo it and don’t use epoxy, tail weight is a killer and there isn’t much force on the motor tube during launch. The foam is plenty strong enough to support the forward thrust and no thrust ring is needed. I’ve flown many flights and the forward foam has never melted or failed.
- Flip the model rightside up.
- CA+ the vertical stabs onto the model. They are pre-sanded at an angle. The angle isn’t really critical as long as each side is approximately the same. The bottom of the stab should rest on the top of the motor tube and be lined up straight with the fuselage. Repeat on the other side.
- CA+ the wing tip pods to the top and bottom of each wing tip. Make sure they are straight and parallel to the fuselage.
- Glue the styrene strip with the dots pointing up on the bottom of the fuselage side view piece. You should center the styrene over the doubled piece of foam.
- Install the launch lug or rail buttons, read and understand before doing this step:
- If you are using rail buttons drill a small hole through each black dot in the styrene to fit a screw and then screw in the two rail buttons. At this loacation, the rail should not interfere with the servos or battery/rx but do a test fit on a rail to be sure.
- If using a launch lug, glue the lug on the side of the lower fuselage side view with CA+. Make sure the launch rod will not hit the motor, mount, electronics, etc.
- If landing on a hard surface, you can install the two pronged wing guards on the bottom of the fuselage. Place them in front of and behind the rail buttons in the bare foam of the doubled fuselage bottom. Make sure they are lined up with the rail buttons and test fit it on the rail to make sure nothing binds. CA+ them in place when correct.
- The basic construction is now complete.
Radio Installation
Note: Your radio needs to be configured for Delta mixing, this means that the servo arms will move the same direction during elevator stick movement and opposite for aileron stick movement. Connect your servos to the receiver one in the aileron connection and one on the elevator connection and apply power. Center the servo output arm by removing the screw and pulling the output arm off and re-installing the arm so it is as close to center as possible and re-install the screw. Use a servo arm approx. 9/16” long and with holes small enough that there won’t be slop with the pushrod wire when installed. I use the hole furthest out on the servo arm, to maximize movement. Zero out any trim settings on the transmitter. With the model upside down and supported, lay a servo on each side near the control surface. You want the servo wire to be pointing toward the front of the model and the servo output shaft to be facing each wing tip and the servo arms pointed up. When you move the elevator stick back(up elevator) both servo arms should move toward the rear of the model(will push the control surface up). When you move the aileron stick to the right, the right servo arm should move toward the rear of the model(up elevon) and the left servo should move away from the rear of the model(down elevator). If you can’t get the servo reversing to give you the right polarity try swapping aileron/elevator inputs to the receiver. (On my model which uses a spektrum 4 or 6 ch receiver and DX7 radio, after centering the servos using sub-trim, Aileron and Elevator servo direction is ^ on the radio. I use 100% servo travel, but then set aileron dual rate at 100% and elevator dual rate at 125%. I set the flap/elevator mix to the flap switch at up 92 for glide. And 0 for boost) You can tune this for boost/glide after the first flight.
Once you have the servos moving the right way, you can proceed
- Install the other end of the pushrod to the servo output arm, again making sure the servo wire is toward the fuselage side of the model. If the wire is too tight, you can use twist an exacto knife in the servo arm hole to make it larger, but be careful and do not make it too large. Once connected, tape each servo in place so that the control surfaces are centered. Make sure the pushrod won’t catch on the leading edge of the control surface. Flip the model right side up and look at it from the rear. Moving the transmitter stick back(up elevator) should move both stabilizors TE’s up. Moving the transmitter stick to the right should move the right TE of the stabilizer up and the left one down. If that is correct, continue.
- Flip the model upside down and supported. The servos may be attached to the model using double back servo mounting tape(not included) or by directly gluing the servo to the wing with CA+ or a small amount of epoxy. Double back servo tape can loosen over time and with exposure to heat, I prefer to glue the servo in place. With the radio still on, put a small amount of glue on the servo, being careful not to get any near the output shaft. And set it in place on the model keeping the control surface centered. Do the same to the other side. Make sure the glue is set before continuing. Again, make sure the pushrod is aligned straight and will not catch on the LE of the control surface.
- Flip the model back right side up. Make sure the control surfaces are centered, use trims if needed. Now measure the control surface movement. Full elevator movement should be 1” in each direction. Aileron movement should be about about ¾”. With modern radios you can typically set these movements. Since the model will be nose heavy, extra stabilizer movement helps to give sufficient authority during glide. Roll rate is not extremely fast during glide so you need plenty of movement. Set up dual rates with lower movements if you are worried but boost with higher settings till you are comfortable.
- If you have a flap/elevator mix you can program up elevator to a switch setting. The model needs approximately 3/8” of up stabilizer during glide. Boost will use completely neutral settings for the first flight. If you can’t set the up elevator to a switch on your radio you’ll have to manually put in glide trim which is hard to do while flying the model.
- Once complete you can tape the servo wires to the wing using the blenderm tape. Use the included Velcro to attach the receiver to the model. Mount the receiver as far forward as it can go. This allows you to be able to remove and replace the receiver if needed for repairs or for painting.
- Use the Velcro to attach the battery
- Insert your heaviest loaded rocket motor into the motor mount.
- Support the model at the balance point indicated for boost. I use two pencils with the eraser pointed up and held in place with a small hand vice. Place the model upside down on the pencil erasers with the erasers just behind where the leading edge of the wing intersects the top view of the fuse as indicated in the plans. Place stick on lead weights near the nose of the model to balance it.
- Do not try to fly the model with it balancing it behind this point. The adage is, a nose heavy model flies poorly, a tail heavy model flies once.
- If painting, make sure to test the paint on a scrap piece first to ensure it won’t melt the foam. I use Model Master(testors) or testors small rattle cans for painting directly on the foam. Model master flat black is perfect.
- Use a black sharpie to add panel lines if desired.
- You can use self adhesive vinyl/mylar decals or lettering,
IntR/Ceptor Rocket Glider Kit
(first generation kit no longer being made)Please refer to the notes on items needed for completion and flying, then read the instructions completely before starting assembly. The assembly photos are for general reference but may not include every step in the manual.
CG location for rocket flight 1/4" rearward from the wing/fuselage intersection
(for electric flight start 1/4" forward of the rocket CG)